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➡ Part I — Tiny Levitating Spheres 

‣ Sphere diameter: 

‣ A new experiment for measuring the gravitational constant G 

‣ Key software: RETINAS

∼70 μm = 7 × 10−5 m

➡ Part III — Large Collapsing Spheres 

‣ Sphere diameter: 

‣ Gravitational collapse of supermassive stars 

‣ Key software: Einstein Toolkit, ENZO Project, MESA

∼1 Mkm = 1 × 109 m

➡ Part II — Colliding Spheres 

‣ Sphere diameter: 

‣ Binary neutron star mergers 

‣ Key software: Einstein Toolkit, GRHayL, NRPy+

∼24 km = 2.4 × 103 m
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Outline

➡ Part IV — Key Software Overview



Part I — Tiny Levitating Spheres
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⃗Fnet = m ⃗a

⃗Fgrav

⃗Ftension

Fgrav sin θ = ⃗Fnet

Fgrav cos θ = ⃗Ftension

θ

⃗Fgrav = m ⃗g

g = 9.8 m/s2 = 32 ft/s2

The Gravitational Force Part I — Tiny Levitating Spheres
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g = 9.8 m/s2 = 32 ft/s2Where does come from?

Fgrav =
GMm

r2
≈

GMEarth

r2
Earth

m

But where does the value of G come from?

Where does G come from? Part I — Tiny Levitating Spheres
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Credit: Wikipedia

The Cavendish Experiment

• Henry Cavendish, in 1978. 

• Based on John Michell’s apparatus. 

• Results within 1% of current values. 

• Many modern experiments use 
variations of this method.

Measuring G Part I — Tiny Levitating Spheres
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Credit: National Institute of Standards and Technology (NIST)

Measuring G Part I — Tiny Levitating Spheres



8Credit: National Institute of Standards and Technology (NIST)

Fgrav = G
Mm

r2

G ≈ 6.67 × 10−11 N m2/kg2

FCoulomb = kC

q1q2

r2

kC ≈ 8.99 × 109 N m2/C2

Gravity is Weak

Measuring G Part I — Tiny Levitating Spheres



9Credit: National Institute of Standards and Technology (NIST)

Systematic Errors

• Difficult to characterize. 

• Most likely explanation.

Measuring G Part I — Tiny Levitating Spheres
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Measuring G Part I — Tiny Levitating Spheres

Lewandowski et al., Phys. Rev. Applied 15, 014050 (2021)

• Magneto-gravitational trap. 

• Microspheres of diameter ~60 µm. 

• High-sensitive, room temperature 
accelerometer. 

• Uses feedback control to damp and 
cool the motion of the particle.
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Particle Tracking Part I — Tiny Levitating Spheres

“Center of Mass” Tracking

⃗R =
∑

⃗r
⃗rI( ⃗r)

∑
⃗r
I( ⃗r)

✓ Computationally inexpensive. 

✓ Easy to implement. 

✗ Accuracy greatly affected by: 
• Image boundaries 
• Noise

⃗R
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Particle Tracking Part I — Tiny Levitating Spheres

Maximum Likelihood Estimation

✓ Implementations readily available. 

✓Maximum accuracy. 

✗ Requires accurate particle model. 

✗ Computationally intensive.

⃗r0

χ2 = ∑⃗
r

[ I( ⃗r − ⃗r0) − E( ⃗r)

σ( ⃗r, ⃗r0) ]
2

E( ⃗r)
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Particle Tracking Part I — Tiny Levitating Spheres

Uniformly-Weighted Cross-Correlation

✓ Some implementations available. 

✓ Can yield sub-pixel precision. 

✓ Does not requires accurate particle model. 

!? Less computationally intensive than MLE. 

✗ Poorly models the noise in the images. 

★ Lewandowski et al., PRApplied 15, 014050 (2021)

⃗r0

σ( ⃗r, ⃗r0) = σ ⟹ χ2 ∼ ∑⃗
r

I( ⃗r − ⃗r0)E( ⃗r)

∑⃗
r

I( ⃗r − ⃗r0)E( ⃗r) = ℱ−1[ℱ[I] ⊗ ℱ[E]]
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Particle Tracking Part I — Tiny Levitating Spheres

⃗r0

σ( ⃗r, ⃗r0) = E( ⃗r) ⟹ χ2 ∼ ∑⃗
r

[I( ⃗r − ⃗r0)]2

E( ⃗r)

∑⃗
r

[I( ⃗r − ⃗r0)]2

E( ⃗r)
= ℱ−1[ℱ[I2] ⊗ ℱ[1/E]]

✓ No implementations available. 

✓ Can yield sub-pixel precision. 

✓ Does not requires accurate particle model. 

!? Less computationally intensive than MLE. 

✓ Adequately models the noise in the images. 

★ LRW++, submitted to RSI (2024)

Shot-Noise-Weighted Cross-Correlation



Particle Tracking Part I — Tiny Levitating Spheres

Sub-Pixel Tracking: The Upsampling Algorithm

15

1) 1.5-pixel square around maximum. 

2) Resolution:         . 

3) Yields upsampled CC. 

4) Maximum of upsampled CC yields 
sub-pixel displacement estimate.

u × u
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Part I — Tiny Levitating Spheres
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Tested against standard methods 

• Fixed image size: 512 x 512. 

• Fixed upsampling factor: 512. 

• Comparable results to ideal Maximum 
Likelihood Estimation. 

• Small fraction of the computational cost.

LRW++, submitted to RSI (2024)

Particle Tracking
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Part I — Tiny Levitating Spheres

100 μm

Real World Complications 

• Fixed upsampling factor: 512. 

!! Particle is no longer a simple Gaussian. 

!! Two cameras. 

• Front: 256 x 128. 

• Side: 128 x 128. 

!! Acquisition rate: 470 images/s/camera. 

!! Need real-time analysis for feedback control.

LRW++, submitted to RSI (2024)

Particle Tracking
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Part I — Tiny Levitating Spheres

LRW++, submitted to RSI (2024)

RETINAS: The Real time Image Analysis Software
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Part I — Tiny Levitating Spheres

LRW++, submitted to RSI (2024)

RETINAS: The Real time Image Analysis Software



Part II — Large Orbiting Stars

20
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What are Gravitational Waves?

GWs are ripples in spacetime traveling at the speed of light, carrying source information. 
• Caused by motion or collapse of massive objects. 
• Predicted by General Relativity, confirmed by detectors.

Credit: LIGO Caltech

Part II — Colliding Spheres
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Detecting Gravitational Waves

• Tiny effects on matter ⇒ extremely difficult to detect. 

◦ Magnitude inversely proportional to source distance. 
◦ Earth length changes                (proton radius                         ). 

• Specialized laser interferometers detect these changes.

∼10−19 m ∼8.33 × 10−16 m

Credit: LIGO Caltech

Part II — Colliding Spheres
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Detecting Gravitational Waves

Credit: LIGO Caltech

Part II — Colliding Spheres
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Detecting Gravitational Waves

GW150914
• Binary black holes. 
• First detection ever.

GW170817
• Binary neutron stars (BNS). 
• First and only BNS detection to date.

Abbot et al., PRL 116, 061102 (2016) Abbot et al., PRL 119, 161101 (2017)

Part II — Colliding Spheres
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Binary Neutron Stars (BNS) Merger Simulations

• Equal-mass (1.39 solar masses) 
• Magnetized 
• Advanced EOS 
• O’Connor & Ott LS220 EOS

• Initial data produced by Tanmayee Gupte using 

LORENE (for more details see talks by T. Gupte and 

Josh Faber from 2021 TCAN Workshop)

Part II — Colliding Spheres

https://stellarcollapse.org/equationofstate.html
https://lorene.obspm.fr
https://www.youtube.com/watch?v=Lq50IlXBJf8
https://www.youtube.com/watch?v=E3YQb6GRB_c
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Inspiral Merger Post-merger

Binary Neutron Stars (BNS) Merger Simulations

● GW170817 + GRB170817A + AT2017gfo: new frontier in multi messenger observations 

● Current & future observations promise further insights 

● Unanswered questions! 

○ Equation of state of extreme nuclear matter? 

○ How do dynamical ejecta lead to observed phenomena?

Much work has been done 
➡ Living Reviews 
➡ Faber & Rasio, Springer 2012 

       ➡ Burns, Springer 2020 
➡ Muguia-Berthier++LRW++ ApJ 2021 
➡ Armengol++LRW++ PRD 2022 
➡ LRW++ PRD 2023 
➡ Zenati++LRW++ ApJ 2023, 2024

Part II — Colliding Spheres
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Binary Neutron Stars (BNS) Merger Simulations

Schneider et al., PRC 96, 065802 (2017)

Part II — Colliding Spheres
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Binary Neutron Stars (BNS) Merger Simulations

Schneider et al., PRC 96, 065802 (2017)

Part II — Colliding Spheres



How to Model BNS Numerically?

29

Spacetime GR(M)HD

3+1 formalism 
BSSN, Z4c, 
CCZ4, etc

∇μ(nb uμ) = 0

∇μ(ne uμ) = ℛ

∇μTμν = 𝒬uν

∇μ
⋆Fμν = 0

Gμν = 8πTμν

Part II — Colliding Spheres



GR(M)HD Modeling — Grid-Based Schemes

!! Prominent Example: Cartesian AMR 

✓ Established, robust method 

✓ Relatively straightforward implementation 

✓ Effective at capturing shock features 

✗ Discontinuous changes in resolution 

✗ Strong numerical artifacts e.g., reflections 

✗ Systems with near-symmetries: highly inefficient 

✗ Eulerian method: inefficient for certain flows

Box-in-box Cartesian AMR grids
30

NS NS

4Δx

8Δx

Δx Δx

2Δx 2Δx

≈ 17 × 109 gridpoints

Typical Simulation 
➡ Time scales: 20–50 ms 
➡ Comp. Cost: HIGH!!! 
➡ ~13.5 MWh 
➡ ~1.4 T CO2e 

➡ Round trip Idaho Falls–Paris

Part II — Colliding Spheres



Part III — Supermassive Stars

31



Gravitational Wave Sources Across the Spectrum
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Part III — Large Collapsing  Spheres

The GW spectrum is as wide as the EM 

spectrum, requiring multiple observatories:


‣ Hz range: (advanced) LIGO, Virgo, KAGRA 

— detected many stellar black hole and 

some neutron star mergers.


‣ nHz range: Pulsar Timing Arrays (PTAs) — 

tracking stable pulsars for 15+ years, 

showing evidence of primordial GW 

background from supermassive black-hole 

binaries.


‣ mHz range: Laser Interferometer Space 

Antenna (LISA) — adopted by ESA, 

scheduled launch in mid-2030s.


‣ In between: other concepts, none actively 

in development.
Lommen, Rep. Prog. Phys. 78 124901 (2015)



The Laser Interferometer Space Antenna (LISA)
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Part III — Large Collapsing  Spheres

• Three spacecraft in an equilateral triangle, 2.5 million km apart. 
• Similar to LIGO/Virgo/KAGRA, but much larger scale. 
• Targets low-frequency GWs. 
• Resolution of 20 pm over a million km. 
• Scheduled to launch in the mid-2030s.

Credit: LISA Mission Concept Credit: NASA



LISA Standard Gravitational Wave Sources
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Part III — Large Collapsing  Spheres

• Merging supermassive black holes. 

• Extreme-mass-ratio inspirals. 

• Galactic white dwarf binaries. 

• All persistent binary sources with high accumulated SNR.

Credit: ESA LISA Definition Study Report 



LISA Standard Gravitational Wave Sources
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Part III — Large Collapsing  Spheres

Saijo & Hawke, PRD 80, 064001 (2009)

Origin of supermassive black holes:
• Merger of smaller stellar BHs; 
• Rapid growth via accretion; and/or 
• Direct collapse of gas to massive seeds 

Investigating DCBH formation is crucial for 
understanding early Universe population.

Potential significant GW source for LISA, if 
waveforms are known.

Currently, only a few numerical waveforms and 
crude analytical estimates.



A Multi-Code Approach to DCBH Formation
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Part III — Large Collapsing  Spheres

IDEA: Derive initial conditions from large-scale
simulations instead of random/idealized configurations:

1. Cosmological simulations like Renaissance. 

2. Newtonian protostellar evolution code like MESA, up to strong-field regime. 

3. Full Numerical Relativity with the Einstein Toolkit for strong gravity scenarios.



The Cosmological Scale
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Part III — Large Collapsing  Spheres

The Renaissance Simulations (RenSims; rensimlab.github.io) 
were conducted in 2013-2015 using Enzo on the Blue Waters 
supercomputer.

Output: regions likely to collapse into supermassive stars (SMS), 
with density, pressure, angular momentum profiles, etc.

Regan et al., OJA 3 (2020)

Initial and final density halos from RenSims
Likely SMS masses identified from halos



The Mesoscale
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Part III — Large Collapsing  Spheres

Modules for Experiments in Stellar Astrophysics 
(MESA; docs.mesastar.org) is a 1D stellar evolution 
code with rotation support.

Performs full stellar evolutions with arbitrary 
equations of state and nuclear processes.

Input: Bulk information (fluid density, rotation info)

Output: 1D hydrodynamic field profiles, approximate 
equation of state

Density vs Temperature evolution from sample MESA run



The Strong Gravity Scale
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Part III — Large Collapsing  Spheres

Spacetime GR(M)HD

3+1 formalism 
BSSN, Z4c, 
CCZ4, etc

∇μ(nb uμ) = 0

∇μ(ne uμ) = ℛ

∇μTμν = 𝒬uν

∇μ
⋆Fμν = 0

Gμν = 8πTμν



Part IV — Key Software Overview
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The Einstein Toolkit
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• Simulate cutting edge science. 

• Use latest numerical methods. 

• Make use of latest hardware. 

- Cache. 

- Vectorization. 

- Accelerators. 

- Scale to many cores. 

- Scale to many nodes. 

• Efficient use of all hardware is complex. 

• Requires: 

- Experts from different disciplines. 

- Careful design to ensure extensibility, portability, reproducibility, and longevity. 

…
42

The Einstein Toolkit Part IV — Key Software Overview

• “Mundane” tasks 

- Efficient I/O 

- Checkpoint/Restart 

- Parameter Parsing 

- Visualization 

- Analysis 

- Steering



43

Part IV — Key Software Overview

Credit: Roland Haas

• Initially: some infrastructure, some application code.

The Einstein Toolkit
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Part IV — Key Software Overview

Credit: Roland Haas

• Growing application suite.

The Einstein Toolkit
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Part IV — Key Software Overview

Credit: Roland Haas

• Growing infrastructure “return”.

The Einstein Toolkit
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Part IV — Key Software Overview

Credit: Roland Haas

• Users from more research fields.

The Einstein Toolkit
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Part IV — Key Software Overview

Credit: Roland Haas

• Most modules are open-source, but not necessarily all.

The Einstein Toolkit
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Part IV — Key Software Overview

• Open, community-driven software development. 

• Separation of physics software and computational infrastructure. 

• Stable, extensible interfaces. 

• Doing science ≫ Running a simulation 

• Students need to know a lot about physics 
(meaningful initial conditions, numerical stability, 
accuracy/resolution, have patience, have curiosity, 
develop a “gut feeling” for what is right ...) 

• The Einstein Toolkit cannot give that, however: 
Open codes that are easy to use allow to concentrate on these things!

The Einstein Toolkit



The General Relativistic Hydrodynamics Library
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Monolithic code base Difficult to debug and extend

Not future-proof

Discourages community adoptionSteep learning curve

Credit: https://www.teepublic.com/tapestry/3141846-tangled-octopus

GRHayL: Motivation Part IV — Key Software Overview
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GRHayL: Streamlined New User Pipeline Part IV — Key Software Overview

New students must learn:


• Physics


• Mathematics


• Computer science


• Astronomy
Weakest link!

Solution:


• Small, modular code pieces


• No obscure language features


• Extensive documentation
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GRHayL: Streamlined New User Pipeline Part IV — Key Software Overview

Small, modular pieces

No obscure language features

Good, extensive documentation

Self-container modules (gems)

C with minimum dependencies 

Wiki pages for all 

gems and functions
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Part IV — Key Software Overview

Credit: https://www.deviantart.com/sylviaritter/art/Cosmic-Cuttlefish-766515479

GRHayL: Modular & Infrastructure-Agnostic
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Part IV — Key Software Overview

Core Code Infrastructure 
Cactus/Einstein Toolkit


NRPy+/BlackHoles@Home


Your Infrastructure/Code

C structs pass data between 

infrastructure & gems

Conservatives-to-

Primitives Routines

Reconstruction

GRHD Fluxes and 

Sources

Induction Equation

Equation of State

Neutrino Physics

Other Physics

GRHayL: Modular & Infrastructure-Agnostic
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GRHayL: Continuous Integration & Code Coverage Part IV — Key Software Overview

Credit: https://github.com/GRHayL/GRHayL

Automated continuous integration (CI) with GitHub Actions


• Multiple OS/compiler combinations


• Uses trusted output to validate test output


• Core functions have individual unit tests



Python-based code generation for numerical 
relativity... and beyond!
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NRPy+ Part IV — Key Software Overview

• Inspired by Kranc, but no Mathematica/Maple license required.


• Python/Sympy-based C/C++/Charm++/CUDA code generator.


★ Similar effort by LBNL/LLNL’s AMReX code generator.


• Arbitrary-order finite-differences for time-integration of PDEs.


• Has it’s own infrastructure called BlackHoles@Home.


• Supports Cartesian-like, cylindrical-like, and spherical-like coordinates.



58

BlackHoles@Home Part IV — Key Software Overview

Credit: Zach Etienne
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BlackHoles@Home Part IV — Key Software Overview

Credit: Zach Etienne
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BlackHoles@Home Part IV — Key Software Overview

Credit: Zach Etienne

115 Binary Black Hole Simulations

• BlackHoles@Home: volunteer computing project. 

• Goal: largest state-of-the-art BBH GW catalog. 

• Challenge: must fit a ~90 Gb BBH simulation in a 
desktop computer. 

• With NRPy+, this is possible! In fact, as a proof-of-
principle, Zach was able to fit it in a cellphone! 

• Efficient grids reduced memory required to ~3 Gb! 

• Stay tuned for its launch!


