GRHayL An Open-source, Modular, Extensible GRMHD Library

Leo Werneck

In collaboration with Samuel Cupp, Terrence Pierre Jacques, and Zach Etienne

Astrophysical neutrinos and the origin of the elements August 3, 2023 — Institute for Nuclear Theory, University of Washington, Seattle, WA

Our starting point is llinoisGRMHD (Etienne+2015, CQG 32 175009)

- A rewrite of the original GRMHD code from the Illinois NR group
- Leaner and faster, yet round-off agreement with original code
- GRMHD for fully dynamical spacetimes Ø
- Open source and part of the Einstein Toolkit D
- "Field tested" to model many systems Single and binary neutron stars Black hole accretion disks Slack hole—neutron star binary ✓ White dwarfs

Latest features (LW+TCAN+2023, PRD 107 044037)

- Support for microphysical equations of state tables
- New conservative-to-primitive infrastructure
- Basic neutrino physics via a leakage scheme

LW+TCAN+2023

LW+TCAN+2023

x

NRPyLeakage

- Based on Ruffert+1996, Burrows+2006, and O'Connor & Ott 2011
- Optical depths are computed using nearest neighbor approach of Nielsen+2011
- Works on systems with or without symmetries

LW+TCAN+2023

LW+TCAN+2023

Armengol+TCAN+2022

The good

- Field tested
- Open source
- Support for microphysical EOS
- Some neutrino physics support

The not so good

- Tied to a single infrastructure
- Steep learning curve
- Relatively small, but still difficult to modify
- Documentation could be better

GRHayL: Motivation

Monolithic code base

Steep learning curve

https://www.teepublic.com/tapestry/3141846-tangled-octopus

GRHayL: Motivation

https://www.teepublic.com/tapestry/3141846-tangled-octopus

GRHayL: General Relativistic Hydrodynamics Library

Refactors IllinoisGRMHD into modular components

GRHayL is the future of IllinoisGRMHD Ø **★** Better documentation ★ Easier to learn **★** Easier to contribute/extend ★ Infrastructure agnostic

GRHayL: Design Philosophy

Streamlined new user pipeline

Extensive documentation

Modularity

Infrastructure agnosticism

GRHayL: Streamlined new user pipeline & documentation

Solution:

- Small, modular code pieces
- No obscure language features
- Extensive documentation

GRHayL: Streamlined new user pipeline & documentation

Small, modular pieces

No obscure language features

Good, extensive documentation

Self-container modules (gems)

C with minimum dependencies

Wiki pages for all gems and functions

GRHayL: modularity and infrastructure agnosticism

https://www.deviantart.com/sylviaritter/art/Cosmic-Cuttlefish-766515479

GRHayL: modularity and infrastructure agnosticism

C structs pass data between infrastructure & gems

Conservatives-to-Primitives Routines

Reconstruction

GRHD Fluxes and Sources

Core Code Infrastructure

Cactus/Einstein Toolkit NRPy+/BlackHoles@Home Your Infrastructure/Code

Other Physics

Neutrino Physics

Equation of State

Induction Equation

19

GRHayL: code validation

How do we validate GRHayL?

Generate random input data

Perturb input data at round-off level

Generate output with GRHayL Generate output with IllinoisGRMHD

Set tolerance from perturbed output

Compare outputs

GRHayL: code validation

Automated continuous integration (CI) with GitHub Actions Multiple OS/compiler combinations Uses trusted output to validate test output Core functions have individual unit tests

https://github.com/GRHayL/GRHayL

GRHayL: implementations/infrastructures

The GRHayL library is mostly oblivious to the grid structure • Knows nothing about AMR, unigrid, patches, etc Many functions also oblivious to coordinate system Core functions are also GPU-friendly

GRHayL implementations provide needed connective tissue

- Loops
- Gridfunction access
- Function scheduling
- Memory management
- MPI/OpenMP/charm++ parallelization
- //O

GRHayL: implementations/infrastructures

Current implementations (infrastructures)

- IllinoisGRMHD (Carpet/CarpetX)
- GRHayLHD (Carpet/CarpetX/NRPy+)

Future infrastructures

- ChaNGa/MaNGa
- GRChombo
- DendroGR
- BlackHoles@Home
- Your infrastructure

petX) tX/NRPy+)

GRHayL: implementations/infrastructures

Cupp+ (in preparation)

GRHayL: summary and future developments

GRHayL summary:

- GRHayL is the future of IllinoisGRMHD
- Minimal dependencies, highly extensible
- Well documented and modular
- Provide GRMHD for many different infrastructures

Future developments

- Better neutrino physics
- Hand-off support between different infrastructures
- More efficient simulations with curvilinear coordinates
- Full GPU support

Courtesy Zach Etienne

Questions?