Leo Werneck, Ph.D.

E Research Experience

Postdoctoral Researcher, University of Idaho	2021 –	
– Designed and implemented scientific software for solving complex differential equations.		
- Developed performance-critical, CUDA-enabled software for simulations & ex	periments.	
- Generated informative visualizations of large-scale HPC simulations with tools like VisIt.		
Visiting Scholar Postdoctoral Researcher, West Virginia University	2019 - 2021	

- Collaborated on multi-institutional software engineering research projects.
- Leveraged finite differences/volume methods to solve complex differential equations.
- Developed advanced microphysics codes for complex numerical simulations.

A Education

Ph.D. in computational astrophysics, University of São Paulo, Brazil	2016 - 2020
M.Sc. in mathematical physics, University of São Paulo, Brazil	2013 - 2016
B.Ed. in physics, University of São Paulo, Brazil	2009 - 2013
Skills	

Scientific Computing: Plasma Physics, PDEs, FFT, Linear Algebra, Numerical Methods Programming: C, C++, Python (NumPy, SciPy, SymPy, Matplotlib), CUDA HPC Tools: MPI, OpenMP, PBS, Slurm, VisIt Development: Git, CI/CD, gdb, valgrind, Bash

P Software Development

GRHayL: Modular, High-Performance General Relativistic Hydrodynamics Library

- Provides core algorithms for magnetized plasma simulations in extreme environments.
- Reduced large-scale HPC simulation time by 30 %, benefiting hundreds of users.
- Optimized for heterogeneous computing architectures through GPU-friendly kernels.
- Implemented & maintained comprehensive unit testing and CI/CD infrastructure.

RETINAS: CUDA-Accelerated Real-Time Image Analysis Toolkit

 Designed a high-performance computing solution for real-time particle tracking and analysis, improving performance of the original code by >400 %.

NRPy+: Python-based C/C++/CUDA/Charm++ Code Generator for Numerical Relativity

- Enabled rapid code development with sophisticated optimizations like SIMD/SIMT.
- Developed microphysics modules for advanced nuclear equations of state and neutrinos.

Einstein Toolkit: Community-Driven Computational Astrophysics Software Infrastructure

- Developed, integrated, & maintained multiple computational astrophysics modules.
- Demonstrated ability to collaborate in large, distributed software development.

& Communication Skills

Effective Communication: Skilled at translating complex ideas into clear, accessible concepts. **Scientific Publication**: 8 peer-reviewed papers, 2 preprints. Select papers (highlight in braces):

- [1] Werneck et al., Rev. Sci. Instrum. 95, 073708 (2024) [RETINAS announcement paper]
- [2] Werneck et al., Phys. Rev. D 107, 044037 (2023) [Complex algorithms & simulations]
- [3] Assumpção, Werneck et al., Phys. Rev. D 105, 104037 (2022) [Complex algorithms]
- [4] Werneck *et al.*, Class. Quantum Grav. 38 245005 (2021) [Complex algorithms]

Oral Presentation: 14 public talks, including at major conferences like the APS April Meeting. **Mentoring**: undergraduate & graduate students; junior postdoctoral researchers.