Leonardo (Leo) Rosa Werneck

875 Perimeter Dr, MS 0903, Moscow, ID • wernecklr@gmail.com

PROFESSIONAL SUMMARY

Versatile computational astrophysicist with extensive experience in developing and enhancing state-ofthe-art numerical codes for simulating compact object mergers, nuclear astrophysics, and multi-messenger signals. Proven track record of spearheading innovative projects, collaborating in multi-institutional research, mentoring graduate students, and securing research funding. Expertise includes general relativistic magnetohydrodynamics, neutrino transport, nuclear reactions, and critical phenomena in gravitational collapse. Research results published in top-tier journals and presented at prestigious scientific conferences.

HIGHLIGHTS

- Led development of major extensions to IllinoisGRMHD, enabling state-of-the-art simulations of compact object systems relevant to nuclear astrophysics.
- Key contributor to the HandOff code, enabling seamless data transfer from the Einstein Toolkit to HARM3D+NUC for physically accurate and long-duration post-merger simulations, critical for study-ing nucleosynthesis and multi-messenger signals.
- Pivotal role in research on dynamical ejecta from binary neutron star mergers, contributing to the understanding of kilonova and other astrophysical transients.
- Major contributor to the design and development of the GRHayL library, extracting core algorithms from IllinoisGRMHD to create a versatile, infrastructure-agnostic solution.
- Led development of neutrino leakage code NRPyLeakage and currently mentoring students on ongoing development of a M1 closure neutrino transport code.
- Key member of the TCAN collaboration led by Prof. Manuela Campanelli, bridging research from multiple research group across elite US institutions.
- While in a postdoctoral role, secured research funding as Institutional PI for a NASA award exceeding \$640,000, showcasing leadership and the ability to fund and manage large-scale research projects.
- Demonstrated cross-disciplinary adaptability through development of RETINAS, a CUDA-ready realtime image analysis code used by collaborators at Montana State University for high-precision measurements of the gravitational constant G and other fundamental physics experiments.

EDUCATION & RESEARCH EXPERIENCE

Postdoctoral Researcher University of Idaho — Moscow, ID, USA	2021–Present
Postdoctoral Researcher West Virginia University — Morgantown, WV, USA	2020 - 2021
Visiting Scholar West Virginia University — Morgantown, WV, USA	2019–2020
Ph.D. in Computational Astrophysics University of São Paulo — São Paulo, SP, Brazil Advisor: Elcio Abdalla Thesis: Aspects of Numerical Relativity: Scalar Fields and Neutron Stars	July 17, 2020
M.Sc. in Mathematical Physics University of São Paulo — São Paulo, SP, Brazil Advisor: Victor O. Rivelles Dissertation: A Gauge Theory for Continuous Spin Particles	2016
B.Ed. in Physics University of São Paulo — São Paulo, SP, Brazil	2013

PEER-REVIEWED PUBLICATIONS

Prefix denotes citations in INSPIRE-HEP (*: 1-5; **: 6-10; ***: 11-15; ****: 16-20)

- * Y. Zenati, J. H. Krolik, L. R. Werneck, Z. B. Etienne, S. C. Noble, A. Murguia-Berthier, and J. D. Schnittman, "The Dynamics of Debris Disk Creation in Neutron Star Mergers," Astrophys. J. 971, no.1, 50, arXiv: 2404.03156 [astro-ph.HE] (2024).
- [2] L. R. Werneck, C. Jessup, A. Brandenberger, T. Knowles, C. W. Lewandowski, M. Nolan, K. Sible, Z. B. Etienne, and B D'Urso, "Cross-correlation image analysis for real-time single particle tracking," Rev. Sci. Instrum. 95, 073708, arXiv: 2310.08770 [physics.optics] (2024).
- [3] * Y. Zenati, J. H. Krolik, L. R. Werneck, A. Murguia-Berthier, Z. B. Etienne, S. C. Noble and T. Piran, "Bound Debris Expulsion from Neutron Star Merger Remnants," Astrophys. J. 958, no.2, 161, arXiv: 2306.09464 [astro-ph.HE] (2023).
- [4] **** L. R. Werneck, Z. B. Etienne, A. Murguia-Berthier, R. Haas, F. Cipolletta, S. C. Noble, L. Ennoggi, F. G. L. Armengol, B. Giacomazzo and T. Assumpção, et al. "Addition of tabulated equation of state and neutrino leakage support to IllinoisGRMHD," Phys. Rev. D 107, no.4, 044037, arXiv: 2208.14487 [gr-qc] (2023).
- [5] ** F. G. L. Armengol, Z. B. Etienne, S. C. Noble, B. J. Kelly, L. R. Werneck, B. Drachler, M. Campanelli, F. Cipolletta, Y. Zlochower and A. Murguia-Berthier, et al. "Handing off the outcome of binary neutron star mergers for accurate and long-term postmerger simulations," Phys. Rev. D 106, no.8, 083015, arXiv: 2112.09817 [astro-ph.HE] (2022).
- [6] ** T. Assumpcao, L. R. Werneck, T. P. Jacques and Z. B. Etienne, "Fast hyperbolic relaxation elliptic solver for numerical relativity: Conformally flat, binary puncture initial data," Phys. Rev. D 105, no.10, 104037, arXiv: 2111.02424 [gr-qc] (2022).
- [7] * L. R. Werneck, Z. B. Etienne, E. Abdalla, B. Cuadros-Melgar and C. E. Pellicer, "NRPyCritCol & SFcollapse1D: an open-source, user-friendly toolkit to study critical phenomena," Class. Quant. Grav. 38, no.24, 245005, arXiv: 2106.06553 [gr-qc] (2021).
- [8] **** A. Murguia-Berthier, S. C. Noble, L. F. Roberts, E. Ramirez-Ruiz, L. R. Werneck, M. Kolacki, Z. B. Etienne, M. Avara, M. Campanelli and R. Ciolfi, et al. "HARM3D+NUC: A New Method for Simulating the Post-merger Phase of Binary Neutron Star Mergers with GRMHD, Tabulated EOS, and Neutrino Leakage," Astrophys. J. 919, no.2, 95, arXiv: 2106.05356 [astro-ph.HE] (2021).

Preprints

- [9] T. P. Jacques, S. Cupp, L. R. Werneck, S. D. Tootle, M. C. B. Hamilton, Z. B. Etienne, "GRoovy: A General Relativistic Hydrodynamics Code for Dynamical Spacetimes with Curvilinear Coordinates, Tabulated Equations of State, and Neutrino Physics," Submitted to Phys. Rev. D. arXiv: 2412.03659 [astro-ph.HE] (2024).
- [10] M. D. Duez, C. L. Cadenhead, Z. B. Etienne, B. J. Kelly, and L. R. Werneck, "Toward 2D Dynamo Models Calibrated by Global 3D Relativistic Accretion Disk Simulations," Submitted to Phys. Rev. D. arXiv: 2404.03156 [astro-ph.HE] (2024).

TECHNICAL SKILLS

Programming Languages

Proficient: C, Python

Competent: C++, CUDA, Fortran, Shell Scripting Familiar: Julia, Mathematica, Matlab

High Performance Computing

Competent: OpenMP, MPI, Slurm, PBS, Spack, conda

UNIX CLI Tools

Competent: git, ssh, awk, sed, grep

Familiar: gdb, valgrind, autoconf, automake, CMake, Meson

Operating Systems & Document Editing

Proficient: Linux, OS X, Windows, LATEX/Overleaf, Google Workspace, Microsoft Office, Apple iWork

3/5

SOFTWARE DEVELOPMENT

IllinoisGRMHD ¹ Core developer & maintainer Einstein Toolkit thorn providing GRMHD for dyna – Documented entire code in pedagogical Jupyter – Added support for finite-temperature, microphy	2019–Present mical spacetimes. notebooks. sical equation of state tables.
Einstein Toolkit ² Contributor & maintainer A community-driven software platform of core con research in relativistic astrophysics and gravitational	2019–Present nputational tools to support al physics.
GRHayL ³ Core developer & maintainer An open-source, modular, infrastructure agnostic G	2023–Present RMHD library.
NRPy+ ⁴ Core developer & maintainer Python-based C code generator for Numerical Rela	2019–Present
 NRPyLeakage⁵ Core developer & maintainer NRPy+-based neutrino leakage code. − Lead developer of Einstein Toolkit thorn version 	2022–Present a of the code, NRPyLeakageET.
NRPyElliptic ⁶ Core developer & maintainer Extensible NRPy+-based elliptic solver for Numeric – Lead developer of Einstein Toolkit thorn version	2021–Present cal Relativity initial data. n of the code, NRPyEllipticET.
NRPyCritCol ⁷ Lead developer & maintainer User-friendly, well-documented NRPy+-based code	2019–Present to study critical phenomena.
SFcollapse1D ⁸ Lead developer & maintainer C++ code to study critical phenomena of a massles	2018–Present s scalar field in 1D.
RETINAS ⁹ Lead developer & maintainer CUDA-ready image analysis code for real-time sing	2021–Present e particle tracking.
<pre>1: https://github.com/IllinoisGRMHD 2: http://einsteintoolkit.org 3: https://github.com/GRHayL 4: https://nrpyplus.net</pre>	⁶ : http://github.com/assumpcaothiago/NRPyElliptic ⁷ : https://github.com/zachetienne/nrpytutorial ⁸ : https://github.com/leowerneck/SFcollapse1D ⁹ : https://github.com/leowerneck/RETINAS

⁵: https://github.com/IllinoisGRMHD

GRANTS & FELLOWSHIPS

Institutional Principal Investigator: Gravitational-Wave Signatures of Massive	2023–Present
Black Hole Formation, NASA LISA Preparatory Science Program.	
Total funding: \$644,836 ; \$78,298 to L. Werneck	
Ph.D. Fellowship, CAPES, Brazil	2016 - 2020
Awarded a highly competitive fellowship for top applicants to the Ph.D. program.	
M.Sc. Fellowship, CAPES, Brazil	2013 - 2016
Awarded a highly competitive fellowship for top applicants to the M.Sc. program.	
Undergraduate Research Fellowship, CNPq, Brazil	2011 – 2013
Awarded a competitive research fellowship for qualified undergraduate students.	

DISTINGUISHED TALKS

2024

- Invited talk, From Microspheres to Supermassive Stars: An overview of the University of Idaho's Numerical Relativity group's research, Idaho National Laboratory, ID, USA.
- Invited talk, North American Einstein Toolkit Summer School, Direct Collapse Black Holes: Gravitational Wave Signatures of Massive Black Hole Formation, Louisiana State University, LA, USA.
- Selected talk, APS April Meeting, *Binary Neutron Star Mergers on a Moving Mesh*, SAFE Credit Union Convention Center, Sacramento, CA.

2023

- Invited talk, INT 23-2: Astrophysical Neutrinos and the Origin of the Elements, *GRHayL: An Opensource, Modular, Extensible GRMHD Library*, Institute for Nuclear Theory, Seattle, WA.
- Invited talk, North American Einstein Toolkit Summer School, *Tutorial: Einstein Toolkit Simulation Analysis*, Rochester Institute of Technology, NY, USA.
- Selected talk, APS April Meeting, *IllinoisGRMHD: Recent Developments and Future Plans*, Hilton Minneapolis, Minneapolis, MN.

2022

- Invited talk, North American Einstein Toolkit "Working Workshop", An introduction to NRPy+, University of Illinois at Urbana-Champaign, IL, USA.
- Invited talk, North American Einstein Toolkit Summer School, Accurate, long-term binary neutron stars simulations with IllinoisGRMHD and HARM+NUC, University of Idaho, ID, USA.
- Selected talk, APS April Meeting, Accurate, long-term binary neutron stars simulations with Illinois-GRMHD and HARM+NUC, New York Marriott Marquis, NY, USA.

2021

- Poster presentation, Midwest Relativity Meeting, *IllinoisGRMHD+HARM3D: Next-generation binary* neutron stars simulations, University of Illinois at Urbana-Champaign, IL, USA.
- Invited talk, North American Einstein Toolkit Summer School, NRPy+ tutorial: Maxwell's equations in flat space & ET thorn generation, University of Illinois at Urbana-Champaign, IL, USA (online event).
- Invited talk, TCAN on BNS Workshop, *IllinoisGRMHD progress update—advanced, tabulated equation of state support*,, Rochester Institute of Technology, NY, USA (online event).
- Selected talk, APS April Meeting, *New, user-friendly codes to study critical collapse*, online event. **2020**
- Invited talk, TCAN on BNS Workshop, *IllinoisGRMHD progress update—piecewise polytropic equation of state support*,, Rochester Institute of Technology, NY, USA (online event).

COMMUNITY INVOLVEMENT

APS April Meeting Session Chair	2024-Present
Peer-review	2023–Present
Physical Review D and Classical and Quantum Gravity	
College of Science Tailgate Event	2022 - Present
Physics booth interactive demonstrator, Moscow, ID, USA.	
2023	

- Manager for the Einstein Toolkit May 2023 release (codename "Karl Schwarzschild").
- M.Sc. committee member for Joaquín E. L. Salazar, UNIFEI, Brazil (online participation).
- Idaho Science & Engineering Fair, Natural Sciences & Best in Fair Judge, Moscow, ID, USA.

2022

- North American Einstein Toolkit Summer School, Member of Scientific & Local Organizing Committees, University of Idaho, ID, USA.
- First Einstein Toolkit Hackaton, NRPy+ mentor; documented several thorns, online event.

Mentoring

Johnny Tsao , Ph.D. Student — University of Texas at Austin Moment-based neutrino radiation transport code for the ET.	2024–Present
David Boyer , Ph.D. Student — University of Idaho TOV solver and moment-based neutrino radiation transport code, both for the ET.	2023–Present
Terrence Pierre Jacques , Ph.D. Student — West Virginia University GRoovy , a GRHD code in curvilinear coordinates, used in an upcoming publication.	2020–Present
Thiago Assumpção, Ph.D. Student — West Virginia University NRPyElliptic, a numerical relativity initial data code discussed in Pub. [5].	2020 - 2024
Gabriel M. Steward, Ph.D. Student — University of Idaho General Relativity, Numerical Relativity, and a drop-in replacement for GSL's ODE s	2022–2023 solver.
Federico G. L. Armengol, Ph.D. Student — Rochester Institute of Technology The HandOff code, discussed in [4].	2021 – 2022
Lucas Pereira Francisco, Undergraduate Student — University of São Paulo, Lorena Guided student on how to use SFcollapse1D for their senior thesis.	a 2020–2021
Amanda Sato, Undergraduate Student — University of São Paulo, Lorena Guided student on how to use SFcollapse1D for their senior thesis.	2020 - 2021
TEACHING EXPERIENCE	
Engineering Physics III (Phys 213) , University of Idaho – Fluids, waves, oscillations, thermodynamics, and geometric optics. – Class of 25 students.	Spring 2024
Experimental Physics I,* University of São Paulo1st Semes- Significant figures, uncertainty, various experiments.1st Semes- Class of 24–30 students, divided in groups of three.1st Semes	ter, 2017–2020
Experimental Physics II,* University of São Paulo2nd Semes- Propagation of uncertainty, various experiments.2nd Semes- Class of 24–30 students, divided in groups of three.2nd Semes	ter, 2017–2018
Introduction to Experimental Physics, [*] University of São Paulo 2nd S – Significant figures, uncortainty, various experiments	Semester, 2016
 Class of 24–30 students, divided in groups of three. 	
 Significant figures, uncertainty, various experiments. Class of 24–30 students, divided in groups of three. Substitute Lecturer Deletisitie Astronometrics (Diversity 404 (204)). University of Idaha 	2024
 Significant figures, uncertainty, various experiments. Class of 24–30 students, divided in groups of three. Substitute Lecturer Relativistic Astrophysics (Phys 404/504), University of Idaho Numerical Methods (Phys 428/528), University of Idaho 	2024 2023
 Significant figures, uncertainty, various experiments. Class of 24–30 students, divided in groups of three. Substitute Lecturer Relativistic Astrophysics (Phys 404/504), University of Idaho Numerical Methods (Phys 428/528), University of Idaho General Physics I (Phys 111), University of Idaho Oscillations and Thermal Physics (Phys 212), West Virginia University 	2024 2023 2022 2020
 Significant figures, uncertainty, various experiments. Class of 24–30 students, divided in groups of three. Substitute Lecturer Relativistic Astrophysics (Phys 404/504), University of Idaho Numerical Methods (Phys 428/528), University of Idaho General Physics I (Phys 111), University of Idaho Oscillations and Thermal Physics (Phys 212), West Virginia University Teaching Assistant Statistical Data Analysis in Formation of 12 physics (Phys 12) 	2024 2023 2022 2020
 Significant figures, uncertainty, various experiments. Class of 24–30 students, divided in groups of three. Substitute Lecturer Relativistic Astrophysics (Phys 404/504), University of Idaho Numerical Methods (Phys 428/528), University of Idaho General Physics I (Phys 111), University of Idaho Oscillations and Thermal Physics (Phys 212), West Virginia University Teaching Assistant Statistical Data Analysis in Experimental Physics, University of São Paulo Electricity and Magnetism, University of São Paulo 	$2024 \\ 2023 \\ 2022 \\ 2020 \\ 2016 \\ 2011, 2012 \\$

References

1. Prof. Zachariah B. Etienne	3. Prof. Julian H. Krolik
Department of Physics	W.H. Miller III Dept. of Physics & Astronomy
University of Idaho	Johns Hopkins University
Email: zetienne@uidaho.edu	Email: jhk@jhu.edu
Phone : $+1(208) 885-1206$	Phone: $+1(410)516-7926$
2. Prof. Elcio Abdalla (thesis advisor)	4. Prof. Manuela Campanelli
Department of General Physics	School of Mathematics and Statistics
University of São Paulo	Rochester Institute of Technology
Email : eabdalla@if.usp.br	Email: manuela@astro.rit.edu
Phone : $+55(11)3091-7036$	Phone : $+1(585)475-7752$